Quantitative Aptitude: Quadratic Equations Questions Set 67

  1. 35m2+16m-3=0
    10n2+136n-56=0
    m<n
    m<=n
    m>n
    m>=n
    the relation cannot be determined
    Option E
    35m2+16m-3=0
    35m2 -5m+ 21m-3=0
    5m(7m -1) + 3(7m -1)=0
    (7m-1) ( 5m+3)=0
    m= 1/7 , -3/5
    10n2+136n-56=0
    10n2 -4n+ 140n -56=0
    n( 10n-4) + 14(10n-4)=0
    (10n-4) ( n+14)=0
    n= 4/10,- 14
    Hence the relation cannot be determined

     

  2. 10m2-136m-14=0
    25n2-10n-8=0
    m<n
    m<=n
    m>n
    m>=n
    the relation cannot be determined
    Option C
    10m2-136m-14=0
    10m2 -140m+m-14=0
    10m(m -14) + 1(m -14)=0
    (m-14) ( 10m+1)=0
    m= +14 , -1/10
    25n2-10n-8=0
    25n2 -20n+ 10n -8=0
    5n( 5n-4) + 2(5n-4)=0
    (5n-4) ( 5n+2)=0
    n= 5/4, -2/5
    Hence m>n

     

  3. 11m2+120m= 11
    8n2+74n+143=0
    m<n
    m<=n
    m>n
    m>=n
    the relation cannot be determined
    Option E
    11m2+120m= 11
    11m2 +121m-m-11=0
    11m(m +11) -1(m +11)=0
    (m+11) ( 11m-1)=0
    m=- 11 , 1/11
    8n2+74n+143=0
    8n2 +22n+52n+143 =
    2n( 4n+11) +13(4n+11)=0
    (4n+11) ( 2n+13)=0
    n= -11/4, -13/2
    Hence the relation cannot be determined

     

  4. 8m2+51m+18=0
    49n2-1=0
    m<n
    m<=n
    m>n
    m>=n
    the relation cannot be determined
    Option A
    8m2+51m+18=0
    8m2 +48m+3m+18=0
    8m(m +6) + 3(m +6)=0
    (m+6) ( 8m+3)=0
    m= -6 , -3/8
    49n2-1=0
    (7n-1) ( 7n+1)=0
    n= 1/7, -1/7
    Hence n>m

     

  5. 40m2-13m+1=0
    18n2+77n-18=0
    m<n
    m<=n
    m>n
    m>=n
    the relation cannot be determined
    Option D
    40m2-13m+1=0
    40m2 -8m-5m+1=0
    8m(5m -1) -1(5m -1)=0
    (5m-1) ( 8m-1)=0
    m= 1/5 , 1/8
    18n2+77n-18=0
    18n2 +81n- 4n -18=0
    9n( 2n+9) – 2(2n+9)=0
    (2n+9) ( 9n-2)=0
    n= -9/2, 2/9
    Hence m ≥ n

     

  6. 16m2+60m+14=0
    8n2– 77n-30=0
    m<n
    m<=n
    m>n
    m>=n
    the relation cannot be determined
    Option A
    16m2+60m+14=0
    16m2 + 56m+ 4m+14=0
    8m(2m +7) + 2(2m +7)=0
    (2m+7) ( 8m+2)=0
    m= -7/2 , -2/8
    8n2– 77n-30=0
    8n2 -80n+ 3n -30=0
    8n( n-10) + 3(n-10)=0
    (n-10) ( 8n+3)=0
    n= 10, -3/8
    Hence n>m

     

  7. 35m2+32m+5=0
    9n2– 36n+32=0
    m<n
    m<=n
    m>n
    m>=n
    the relation cannot be determined
    Option A
    35m2+32m+5=0
    35m2 + 25m+ 7m+5=0
    5m(7m +5) + 1(7m +5)=0
    (7m+5) ( 5m+1)=0
    m= -5/7 , -1/5
    9n2– 36n+32=0
    9n2 -12n-24n +32=0
    3n( 3n-4) -8(3n-4)=0
    (3n-4) ( 3n-8)=0
    n= 4/3, 8/3
    Hence n>m

     

  8. 35m2-18m-81=0
    10n2+184n-114=0
    m<n
    m<=n
    m>n
    m>=n
    the relation cannot be determined
    Option C
    35m2-18m-81=0
    35m2 – 45m+ 63m-81=0
    5m(7m -9) + 9(7m -9)=0
    (7m-9) ( 5m+9)=0
    m= 9/7 , -9/5
    10n2+184n-114=0
    10n2 -6n+ 190n -114=0
    n( 10n-6) + 19(10n-6)=0
    (10n-6) ( n+19)=0
    n= 6/10,- 19
    Hence m>n

     

  9. 10m2+79m+63=0
    48n2+10n-2=0
    m<n
    m<=n
    m>n
    m>=n
    the relation cannot be determined
    Option A
    10m2+79m+63=0
    10m2 +70m+9m+63=0
    10m(m +7) + 9(m +7)=0
    (m+7) ( 10m+9)=0
    m= -7 , -9/10
    48n2+10n-2=0
    48n2 -6n+ 16n -2=0
    6n( 8n-1) + 2(8n-1)=0
    (8n-1) ( 6n+2)=0
    n= 1/8, -2/6
    Hence n>m

     

  10. 2m2-35m= -17
    2n2+35n= +17
    m<n
    m<=n
    m>n
    m>=n
    the relation cannot be determined
    Option D
    2m2-35m= -17
    2m2 -34m-1m+17=0
    2m(m -17) -1(m -17)=0
    (m-17) ( 2m-1)=0
    m= 17 , 1/2
    2m2-35m= -17
    2m2 -34m-1m+17=0
    2m(m -17) -1(m -17)=0
    (m-17) ( 2m-1)=0
    m= 17 , 1/2
    2n2+35n= +17
    2n2 +34n+1n+17=0
    2n(n +17) +1(n +17)=0
    (n+17) ( 2n+1)=0
    n= -17 , -1/2
    m>n

     

Related posts

2 Thoughts to “Quantitative Aptitude: Quadratic Equations Questions Set 67”

  1. Hey! I just wish to give an enormous thumbs up for the nice data you have right here on this post. I shall be coming again to your blog for extra soon.

  2. If some one wants to be updated with newest technologies therefore he must be go to see
    this website and be up to date daily.

Comments are closed.